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Abstract: Mounting evidence suggests that ferroptosis is not just a consequence but also a funda-
mental contributor to the development and progression of Parkinson’s disease (PD). Ferroptosis
is characterized as iron-dependent regulated cell death caused by excessive lipid peroxidation,
leading to plasma membrane rupture, release of damage-associated molecular patterns, and neu-
roinflammation. Due to the crucial role of intracellular iron in mediating the production of reactive
oxygen species and the formation of lipid peroxides, ferroptosis is intimately controlled by regulators
involved in many aspects of iron metabolism, including iron uptake, storage and export, and by
pathways constituting the antioxidant systems. Translational and transcriptional regulation of iron
homeostasis and redox status provide an integrated network to determine the sensitivity of ferropto-
sis. We herein review recent advances related to ferroptosis, ranging from fundamental mechanistic
discoveries and cutting-edge preclinical animal studies, to clinical trials in PD and the regulation of
neuroinflammation via ferroptosis pathways. Elucidating the roles of ferroptosis in the survival of
dopaminergic neurons and microglial activity can enhance our understanding of the pathogenesis of
PD and provide opportunities for the development of novel prevention and treatment strategies.

Keywords: Parkinson’s disease; ferroptosis; neuroinflammation; iron; lipid peroxidation; antioxi-
dant defense

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease af-
fecting populations globally. The global death due to PD increased by approximately 40%
between 2005 and 2015 [1]. According to pathological studies, a reduction in the number of
dopaminergic neurons and an abnormal accumulation of α-synuclein (α-syn) result in a
shortage of dopamine from the substantia nigra–striatum pathway, causing clinical symp-
toms such as tremor, bradykinesia, rigidity, and postural balance disorders [2,3]. Although
the pathology of PD remains unclear, compelling evidence from clinical, preclinical, and
epidemiological studies suggests that neuroinflammation and oxidative stress may play
central roles in PD pathogenesis [4–6].
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In multicellular organisms, regulated cell death (RCD) is a function necessary for
the normal development and maintenance of tissue homoeostasis, as well as to elimi-
nate damaged cells. RCD is controlled death that involves tightly structured signaling
cascades and molecularly defined effector mechanisms [7]. In addition to apoptosis and
necroptosis, studies have recently revealed new types of RCD, including pyroptosis and
ferroptosis [8–11]. These RCD modes have distinct cellular morphological, biochemical
(Table 1), and signaling pathway (Figure 1) features.
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Shrinkage of cell 

BCL2 TCD [13–15] 

BCL2, B-cell lymphoma 2; GPX4, glutathione peroxidase 4; HO-1, heme oxygenase-1; ICD, immunogenic cell death; Nec-
1, necrostatin-1; OMM, outer membrane of mitochondria; TCD, tolerogenic cell death. 
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acyl-CoA synthetase long chain family member 4; ALOXs, arachidonate lipoxygenases; ASC, apoptosis-associated speck-
Figure 1. Molecular pathways and immunogenic properties of ferroptosis, necroptosis, pyroptosis, and apoptosis. ACSL4,
acyl-CoA synthetase long chain family member 4; ALOXs, arachidonate lipoxygenases; ASC, apoptosis-associated speck-like
protein containing a CARD (ASC); LPCAT3, lysophosphatidylcholine acyltransferase 3; TFRC, transferrin receptor; APAF-1,
apoptotic peptidase activating factor 1; BAK, Bcl-2 homologous antagonist/killer; BAX, Bcl-2-associated X; BCL2, B-cell
lymphoma 2; BID, BH3 interacting domain death agonist; DFX, deferoxamine; tBID, truncated BH3 interacting domain
death agonist; FADD, Fas-associated protein with death domain; GSDMD, gasdermin D; MLKL, mixed lineage kinase
domain-like pseudokinase; Nec-1, necrostatin-1; NLRP3, Nod-like receptor 3; RIP1, receptor-interacting protein kinase 1;
RIP3, receptor-interacting protein kinase 3; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; TRAIL,
tumor necrosis factor-related apoptosis-inducing ligand; TRAILR1, tumor necrosis factor-related apoptosis-inducing ligand
receptor 1.

As one of the most commonly studied forms of RCD, apoptosis may be triggered by
both extrinsic (death receptor-activated) and intrinsic (mitochondrial or B-cell lymphoma
2 (BCL-2) regulated) pathways. The extrinsic pathway can be activated by ligation of
the tumor necrosis factor receptor (TNFR) superfamily members, which promote adaptor
proteins (e.g., FADD) to activate caspase-8, and then the downstream effector caspase-3 [12].
The intrinsic pathway can be induced by intrinsic stress (growth factor deprivation, DNA
damage, and endoplasmic reticulum stress), and BH3-only proteins such as BCL2 binding
component 3 (BBC3, also known as PUMA), phorbol-12-myristate-13-acetate-induced
protein 1 (PMAIP1, also known as NOXA), BCL2 Like 11 (BCL2L11, also known as BIM),
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BH3 Interacting Domain Death Agonist (BID), and the BCL2 associated agonist of cell
death (BAD) [13,14]. To illustrate, p53-upregulated PUMA can bind with high affinity
to BCL-2, thereby liberating BAX/BAK to mitochondria. This leads to the formation of
mitochondrial outer membrane permeabilization (MOMP), and the released cytochrome c
then binds to apoptotic peptidase activating factor 1 (APAF1) to form apoptosome, and the
resultant apoptosis. Under endoplasmic reticulum stress, the conformational activation
of BAX/BAK occurs at the mitochondria, thereby relaying the signaling required for the
assembly of apoptosome [15]. In terms of necroptosis, the inducers have been identified as
tumor necrosis factor (TNF), the CD95 receptor/Fas ligand complex, and other members
of the TNF superfamily [7]; while receptor-interacting protein kinase 1 (RIP1), RIP3, and
mixed lineage kinase domain-like pseudokinase (MLKL) are proteins required for the
activation of necroptosis. In response to death receptor activation, the binding of RIP1
to RIP3 triggers the formation of necrosomes, resulting in MLKL activation [11]. As a
necroptotic effector, the activated MLKL translocates to the plasma membrane causing
membrane lysis and subsequent cell death. Of note, necrostatin-1 has been reported to
suppress necroptosis via inhibition of RIP1 activity [16]. With regards to pyroptosis, the
predominant hallmarks are the activation of the inflammasome, a cytosolic multiprotein
complex accounting for the release of interleukin-1 beta (IL1B) and IL18, the formation
of apoptosis-associated speck-like protein containing a CARD (ASC), and the activation
of proinflammatory cascades [17]. In general, when pattern recognition receptors (PRRs,
e.g., nod-like receptor 3 (NLRP3) and absent in melanoma like receptor 2 (AIM2)) first
identify various danger signals, they proceed to activate pro-caspase-1 cleavage and ASC
recruitment in order to assemble inflammasomes. The activated caspase-1 acts to cleave the
pyroptosis executor gasdemin D (GSDMD) at site Asp275 to free the N-terminal domain
(GSDMD-MT) and generate nonselective pores on the cell membrane. Meanwhile, caspase-
1 cleaves and activates the precursors of IL1B and IL18 to generate mature IL-1β and
IL-18. The intracellular contents are subsequently released via GSDMD-MT-caused pores,
leading to pyroptosis [17]. Additionally, an inflammasome-independent, noncanonical
pathway mediated by a caspase-1/4/5/11-cleaved GSDMD-MT has been identified [18–20].
Thereafter, the drug disulfiram was approved by the Food and Drug Administration
(FDA) as a pyroptosis inhibitor via targeting GSDMD [21]. Indeed, after being recently
recognized as a distinct type of RCD, further investigation of ferroptosis offers promise for
the discovery of novel treatments for PD.

Table 1. Morphological and immune features of ferroptosis, apoptosis, necroptosis, and pyroptosis.

Morphological Features Representative Inhibitor Immune Features Reference

Ferroptosis Small mitochondria Iron chelators ICD [22–24]
Vanishing mitochondrial crista GPX4

OMM rupture HO-1 inhibitor
Normal nucleus
Normal cell size

Necroptosis

Swollen mitochondria
Release of cytoplasmic constituents

Plasma membrane rupture
Chromatin condensation

Swollen cell

Nec-1 ICD [7,11]

Pyroptosis

Unaltered mitochondria
Pore formation on plasma membrane

Inflammasome formation
Chromatin condensation

Swollen cell

Disulfiram ICD [17–20]

Apoptosis

Unaltered mitochondria
Apoptotic bodies

Cytoskeletal disintegration
Chromatin condensation

Shrinkage of cell

BCL2 TCD [13–15]

BCL2, B-cell lymphoma 2; GPX4, glutathione peroxidase 4; HO-1, heme oxygenase-1; ICD, immunogenic cell death; Nec-1, necrostatin-1;
OMM, outer membrane of mitochondria; TCD, tolerogenic cell death.
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Dixon et al. first illustrated the process of ferroptosis [22], which refers to iron-
dependent cell death caused by lipid peroxidation and subsequent plasma membrane
rupture [24]. Being distinct from other types of RCD, ferroptosis does not present the
characteristic cellular swelling observed in necroptosis and pyroptosis, nor the cellular
shrinkage and formation of apoptotic bodies exhibited in apoptosis (Table 1). In terms of
organellar morphology, ferroptosis does not exhibit chromatin condensation in the nucleus
or cytoskeletal disintegration. However, it manifests in distinct disorganization of mito-
chondria, including mitochondrial shrinkage, the vanishing of mitochondrial crista, and
the rupturing of the outer mitochondrial membrane (OMM). A growing body of research
has led to the identification of an intricate signaling pathway which controls ferroptosis
by preventing iron accumulation and lipid peroxidation, or by disturbing the antioxidant
defensive system. Indeed, the brain is the main tissue in which iron accumulates [25]. The
brain has the highest levels of polyunsaturated fatty acids (PUFAs), which are recognized
as lipid peroxide precursors [26]. Furthermore, there is a close correlation of lipid peroxida-
tion with neurodegeneration [27]. During the disease progression of PD, the dysregulation
of iron metabolism is closely associated with cellular damage and oxidative stress, while
cellular ferroptosis has notably been observed in dopaminergic neurons in both in vivo
and ex vivo PD models [28]. As such, it is significant that ferroptosis-targeting agents
have been reported to exert positive effects in several preclinical settings and in patients
with PD (Table 2), representing positive steps in the development of novel PD therapeutic
modalities. In light of this, we aimed to review the latest research on ferroptosis to further
the understanding of its pathogenesis and to propose potential targets for the treatment
of PD.

Table 2. Updated therapeutic approaches targeting ferroptosis pathways in neuroinflammation and PD.

Mechanism of Action Agent Phase of Clinical
Development Reference

↓Iron (chelating) DFP Phase 2 NCT00943748 [29]

↓Iron (chelating) DFP Phase 2 NCT01539837 [30]

↓Iron (chelating) DFP Phase 2 NCT02728843

↓Iron (chelating) DFP Phase 2 NCT02655315

↓Iron (chelating) Clioquinol in vivo [31]

↓Iron (targeting CISD1) NL-1 in vitro [32]

↓HO-1 ZnPP in vivo [33]

↓Lipid peroxides Fer-1 in vitro [34]

↓Lipid peroxides Lip-1 in vitro [35]

↓Lipid peroxides Carnosine Phase 1 [36]

↓Lipid peroxides CuII(atsm) in vitro; in vivo [35,37]

↓Lipid peroxides CuII(atsm) Phase 1 NCT03204929

↑Antioxidant defense Ubiquinone (CoQ10) Phase 2 [38,39]

↑Antioxidant defense Selenium in vivo [40]

↑Antioxidant defense Omega 3 fatty acids,
vitamin E Phase 2 [41]

↑Antioxidant defense GSH Phase 1/2a, 2b [42,43]

↑Antioxidant defense NAC Phase 1 [44,45]

↑Antioxidant defense (↑NFE2L2) SFN in vivo [46–48]

↑, promote; ↓, inhibit; CoQ10, coenzyme Q10; CuII (atsm), diacetyl-bis(4-methyl-3-thiosemicarbazonato) copperII; DFP, deferiprone; Fer-1,
Ferrostatin-1; GSH, glutathione; HO-1, heme oxygenase-1; Lip-1, Liproxstatin-1, NAC, N-acetylcysteine; NFE2L2, nuclear factor erythroid 2
like 2; PUFA-PL-OOH, lipid peroxides generated from polyunsaturated fatty acid-containing phospholipids; SFN, sulforaphane; ZnPP, zinc
protoporphyrin.
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2. Iron Accumulation and Lipid Peroxidation

Iron accumulation and lipid peroxidation are two key hallmarks of ferroptosis [22].
Iron is an important trace element, while an aberrant distribution or content of iron within
the body may lead to physiological disorders. Iron imported into a cell can be medi-
ated by transferrin (TF) via the transferrin receptor (TFRC) (Figure 2) [49]. Iron-loaded
serotransferrin-TFRC complexes are internalized through endosomes, where they release
iron (Fe2+) into the cytoplasm through solute carrier family 11 member 2 (SLC11A2),
leading to increased iron accumulation and the subsequent induction of ferroptosis [49].
Additional sources of iron come from lactotransferrin (LTF) and heme, provided through
differing import mechanisms in the cell membrane [24]. Iron export, on the other hand,
as mediated by solute carrier family 40 member 1 (SLC40A1), effectively inhibits ferropto-
sis [50]. The knockdown of TFRC may inhibit erastin-induced ferroptosis [51], while heme
oxygenase-1 (HO-1) can act to accelerate erastin-induced ferroptosis by supplementing
iron [52]. Ferritin acts as an iron storage protein complex composed of ferritin heavy
chain 1 (FTH1) and ferritin light chain (FTL) [53]. Brown et al. reported that prominin2
(PROM2) acts to form ferritin-containing exosomes, which are exported from the cell,
thereby preventing ferroptosis [54]. Meanwhile, the autophagic degradation of ferritin, a
process known as ferritinophagy, is mediated by nuclear receptor co-activator 4 (NCOA4)
and can enhance intracellular iron (Fe2+) levels, ultimately resulting in ferroptosis [55,56].
Furthermore, the Nrf2-regulated gene HO-1 catabolizes heme into three products: carbon
monoxide, biliverdin, and free iron. By supplementing iron, HO-1 can effectively augment
ferroptosis induced by erastin [52].

Mitochondrial proteins including cysteine desulfurase (NFS1), iron-sulfur cluster
assembly enzyme (ISCU), CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET),
and CISD2 (also known as nutrient-deprivation autophagy factor-1 (NAF-1)) are involved
in the functional utilization of iron for iron-sulfur cluster biogenesis, acting to inhibit
ferroptosis by increasing the biosynthesis of iron-sulfur clusters (Fe-S), thereby reducing
intracellular iron levels [57–60] (Figure 2). An intracellular iron excess promotes subsequent
lipid peroxidation by way of at least two mechanisms: (1) the iron-dependent Fenton reac-
tion that produces reactive oxygen species (ROS); and (2), the activation of iron-containing
enzymes such as lipoxygenases (ALOXs) [24,61,62]. In the process of ferroptosis, PUFAs
are the most susceptible to lipid peroxidation, which can damage the membrane struc-
ture [63]. Acyl-CoA synthetase long chain family members (ACSLs) and lysophospholipid
acyltransferase 3 (LPCAT3) promote the integration of polyunsaturated fatty acids (PUFAs)
into phospholipids (PLs) to form polyunsaturated fatty acid-containing phospholipids
(PUFA-PLs), which are sensitive to ROS-initiated oxidation mediated by ALOXs, leading
to the formation of lipid peroxides (PUFA-PL-OOH), and ultimately ferroptosis [64–67].

Iron regulatory proteins, including aconitase 1 (ACO1) and iron-responsive element
binding protein 2 (IREB2), play central roles in regulating cellular iron homeostasis at the
posttranscriptional level. ACO1 is a Fe-S cluster protein that exists in two forms. When a
cell is rich in iron, ACO1 exists in the form of cytoplasmic aconitase. When intracellular
iron is lacking, ACO1 presents in the Fe-S cluster as a regulator of translation. Unlike ACO1,
IREB2 is mainly regulated by F-box and leucine-rich repeat protein 5 (FBXL5)-mediated
protein degradation. IREB2 undergoes degradation when iron is excessive and stabilizes
when iron is lacking [68] (Figure 2). In the context of erastin-stressed cell death, IREB2
can relay the pro-ferroptosis effect by altering genes accounting for iron metabolism [69].
Mechanistically, ACO1/IREB2 acts to target the iron-responsive elements (IREs) which
are conserved hairpin structures located in the untranslated regions (UTRs) of mRNAs.
The main iron-regulating mRNAs can be regulated by ACO1/IREB2, including the genes
involved in iron import (e.g., TFRC and SLC11A2), storage (e.g., FTH1 and FTL), and
export (e.g., SLC40A1). Interestingly, the binding of ACO1/IREB2 to IREs located in
the 5′ UTR and 3′ UTR has the opposite effect. The binding of ACO1/IREB2 to 5′ IRE
leads to the inhibition of translation of mRNA; whereas the binding to 3′ IRE causes the
promotion of translation of mRNA by inhibiting the degradation of mRNA. As shown
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in Figure 2, under the condition of iron deficiency, ACO1/IREB2 binds to the 3′ IREs of
TFRC and SLC11A2 mRNAs, and the 5′ IREs of SLC40A1 and FTH1/FTL mRNAs. As a
result, ACO1/IREB2 decreases the synthesis of TFRC and SLC11A2, while it increases the
synthesis of SLC40A1 and FTH1/FTL mRNAs. On the other hand, an excess of cytosolic
iron results in translational inhibition of TFRC and SLC11A2, and translational activation
of SLC40A1 and FTH1/FTL [70]. Ferroptosis can be regulated by several transcription
factors that control the transcription activity of genes involved in iron metabolism [71]. For
instance, nuclear factor erythroid 2 like 2 (NFE2L2, also known as NRF2) plays a primary
role in the anti-ferroptotic effect by up-regulating genes responsible for iron storage, such
as FTH1/FTL [71,72] and SLC40A1 [73].
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Figure 2. Molecular pathways of iron metabolism and lipid peroxidation in ferroptosis. Ferroptosis is mainly activated
by iron accumulation-mediated lipid peroxidation, which is determined by key factors accounting for the import, export,
and metabolism of iron and the formation of lipid peroxides (PUFA-PL-OOH). ·OH, hydroxyl radical; ACO1, aconitase 1;
ACSL, acyl-CoA synthetase long chain family members; ALOXs, lipoxygenases; CISD1/2, CDGSH iron sulfur domain 1/2;
CuII (atsm), diacetyl-bis(4-methyl-3-thiosemicarbazonato) copperII; DFO, desferoxamine; FBXL5, F-box and leucine-rich
repeat protein 5; FTH1, ferritin heavy chain 1; FTL, ferritin light chain; H2O2, hydrogen peroxide; HO-1, heme oxygenase-1;
IREB2, iron response element binding protein 2; ISCU, iron-sulfur cluster assembly enzyme; LPCAT3, lysophospholipid
acyl-transferase 3; LTF, lactotransferrin; NCOA4, nuclear receptor co-activator 4; NFE2L2, nuclear factor erythroid 2 like 2;
NFS1, NFS1 cysteine desulfurase; PROM2, prominin 2; PUFA-PL-OOH, lipid peroxides generated from polyunsaturated
fatty acid-containing phospholipids; SLC11A2, solute carrier family 11 member 2; SLC40A1, solute carrier family 40
member 1; SCL46A1, solute carrier family 46 member 1; SCL48A1, solute carrier family 48 member 1; TF, transferrin; TFRC,
transferrin receptor.

3. Antioxidant Mechanisms in Preventing Ferroptosis

ROS or oxidative stress contributes significantly to the induction of Fenton reaction
and the formation of lipid peroxides. Thus, the antioxidant defense system is a crucial factor
in neutralizing ferroptosis development. Several classes of antioxidant pathways exist
which can counteract ferroptosis, including the glutathione (GSH)-dependent phospholipid
hydroperoxidase glutathione peroxidase 4 (GPX4) pathway in the cytosol (GPX4cyto) and
mitochondria (GPX4mito). Additionally, the GSH-independent coenzyme Q10 (CoQ10,
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also known as ubiquinone) pathway is underpinned by ferroptosis suppressor protein 1
(FSP1, also known as apoptosis-inducing factor mitochondrial 2 (AIF-M2)) at the plasma
membrane (FSP1-CoQ10 axis) and dihydroorotate dehydrogenase (DHODH) in the inner
membrane of mitochondria (DHODH-CoQ10 axis) (Figure 3) [74,75].
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The synthesis of GSH primarily relies on the import of cystine (Cys2). System xc−

is a cystine/glutamate antiporter which is widely distributed in phospholipid bilayers
and acts to import Cys2 into cells with a 1:1 counter-transport of glutamate [9,22], and
maintains homeostasis of the cellular antioxidant system. System xc− is a heterodimer
composed of two subunits: solute carrier family 7 member 11 (SLC7A11) and solute carrier
family 3 member 2 (SLC3A2). The Cys2 within cells can be oxidized to cysteine (Cys) in a
reaction catalyzed by glutamate-cysteine ligase (GCL) and glutathione synthetase (GSS),
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which is required for the synthesis of GSH [24]. The GSH functions to reduce ROS and
reactive nitrogen under the activity of glutathione peroxidases. Among the GPX family,
GPX4 plays a critical role in regulating the manifestation of ferroptosis. The biosynthesis
of GPX4 requires the micronutrient selenium [76]. GPX4 can convert GSH into oxidized
glutathione (GSSG) and reduce cytotoxic lipid peroxides (L-OOH) to the corresponding
alcohols (L-OH), thus hindering the formation of lipid peroxides (Figure 3). Several GPX4
inhibitors have been reported to stimulate cell ferroptosis, including RSL3, ML162, ML
210, FIN56, FINO2 [75]. By generating anti-ferroptotic biomolecules including isopentenyl-
pyrophosphate (IPP) and CoQ10, the mevalonate (MVA) pathway counteracts ferroptosis.
The synthetic processes of the two molecules require the rate-limiting enzyme, HMG-CoA
reductase (HMGCR), which is also an inhibitory target of statins (a class of cholesterol-
lowering drugs) [77]. IPP acts to stabilize selenocysteine tRNA, which is required for the
synthesis of GPX4 [78]. As for the GPX4-independent CoQ10 pathway, Bersuker et al.
first reported that FSP-1, a flavoprotein formerly known as AIF-M2 (apoptosis-inducing
factor mitochondrial 2), exhibits a protective effect against the generation of ferroptosis, as
induced by GPX4 deletion [79]. At the plasma membrane, FSP-1 acts as an oxidoreductase
that reduces CoQ10 to generate CoQH2 (also known as ubiquinol) which can repair lipid
peroxides [80]. Aside from FSP-1, NAD(P)H quinone dehydrogenase 1 (NQO1) in the
plasma membrane acts to reduce CoQ10 to generate CoQH2 [81], offering an alternative
pathway to prevent lipid peroxidation. A more recent report by Mao et al. reveals that the
mitochondrial enzyme DHODH acts to coordinate with GPX4mito, inhibiting ferroptosis by
detoxifying lipid peroxides accumulated in mitochondria [74]. DHODH, an iron-containing
flavin-dependent enzyme, is involved in the de novo synthesis of pyrimidines within
mitochondria [82]. As reported, DHODH generates CoQH2 by reducing CoQ10 through a
uridine-synthesizing redox reaction which catalyzes dihydroorotate to orotate [74]. Of note
is that DHODH inhibitors have been applied in the treatment of autoimmune diseases,
such as multiple sclerosis and rheumatoid arthritis [75]. Although published reports
involving the role of DHODH-mediated CoQH2 generation in PD remain limited, the
use of CoQ10 supplementation in patients with PD has demonstrated safety and patient
tolerance, achieving phase 2/3 trials. With regard to transcriptional control, NFE2L2 acts
to up-regulate GPX4, SLC7A11, and SLC3A2, thereby boosting the antioxidant defense
system [71].

4. Targeting Ferroptosis in the Treatment of PD

A growing body of evidence supports the therapeutic role of targeting iron accumu-
lation in the treatment of PD. Deferiprone (DFP) presents iron-scavenging activity [83],
especially for iron accumulation in mitochondria, the organelle considerably affected by
iron-dependent oxidative damage in the context of neurodegeneration [84–86]. Devos
et al. demonstrated that DFP supplementation (30 mg/kg/day) to PD patients exhibited
efficacy and safety in a pilot double-blind, placebo-controlled randomized clinical trial
(RCT) [29]. A phase 2 RCT conducted by Martin-Bastida et al. revealed that DFO exerted
iron-lowering effects in some areas of the brain, leading to a nonsignificant improvement
of motor functions according to the Unified Parkinson’s Disease Rating Scale (UPDRS) [30].
A widely used antiparasitic agent, clioquinol (iodochlorhydroxyquin), has been reported
to present redox-silencing of reactive Fe2+ and neuroprotective effects [87,88]. Shi et al.
reported that clioquinol treatment improved motor and nonmotor deficits in an MPTP ()
intoxication monkey model [31]. Clioquinol treatment resulted in decreased iron accumu-
lation and lipid peroxidation in the substantia nigra of the animals. Mitochondrial protein
CISD1 is implicated in the pathophysiology of PD. Geldenhuys et al. demonstrated that
CISD1-knockout mice showed increased ROS and cell loss of the dopaminergic neurons,
resulting in impaired motor performance [89]. In respect to CISD1-targeting drugs, NL-1 is
the first drug designed by removal of the tail of pioglitazone to eliminate PPAR-γ activity,
while retaining CISD1 binding affinity [90]. Geldenhuys et al. demonstrated that NL-1
provided neuroprotection against the PD toxin rotenone [32]. Zuo et al. recently reported
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that ferritinophagy plays a critical role in inducing neurotoxicity [34]. The PD-inducing
toxin, paraquat, causes iron accumulation in cytoplasm and mitochondria and increases
arachidonate 12-Lipoxygenase (ALOX12) via NCOA4-involved ferritinophagy activity.
The ferroptosis inhibitor Ferrostatin-1 (Fer-1) acts to reduce ALOX12 levels and reverses
paraquat-induced ferroptosis [34]. Southon et al. revealed that Liproxstatin-1 (Lip-1) acts
to prevent neuronal cell ferroptosis induced by RSL3/erastin [35]. Fernandez-Mendivil
et al. reported that lipopolysaccharide (LPS) induced neuroinflammation and ferroptosis in
the mouse brain, concurrent with increased HO-1 levels [33]. The inflammatory molecular
phenotype was prevented both in mice with microglial HO-1 knockout, and in mice treated
with HO-1 inhibitor ZnPP (zinc protoporphyrin) [33].

Eliminating lipid peroxides resulting from iron accumulation and ROS stress is an
emerging therapeutic strategy. Carnosine, an endogenous histidyl dipeptide (β-alanine-L-
histidine), acts to conjugate lipid peroxides to provide protective effects against oxidation
damage [91]. In a 6-hydroxydopamine (6-OHDA)-insulted PD cellular model, carno-
sine was shown to reduce neuronal cell death and ROS production [92]. Brown et al.
demonstrated that intranasal carnosine treatment reduced α-syn accumulation in the sub-
stantia nigra and motor function in a Thy1-α-syn PD mice model [93]. Carnosine has
been reported to increase the effectiveness of PD patients’ primary therapy, decrease the
UPDRS score, and restore superoxide dismutase (SOD) levels in a phase 1 clinical trial [36].
CuII(atsm) is a bis(thiosemicarbazone)copperII compound which has been found to re-
duce iron overload-induced lipid peroxidation and prevent cell ferroptosis [35]. Hung
et al. found that CuII(atsm) rescued dopaminergic cell loss in both MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine) PD mouse model and a human A53T (hA53T) mutant
α-syn overexpression PD mouse model [37]. Importantly, CuII(atsm) recently presented
promising preliminary results in both a phase 1 trial of patients with amyotrophic lateral
sclerosis (NCT02870634) and a phase 1 trial of patients with PD (NCT03204929). Neuro-
toxin 6-OHDA increases the levels of ACO1 in 6-OHDA lesioned rats, while inhibition of
ACO1 leads to neuroprotection [94].

In terms of approaches to target antioxidant defense, an increasing number of pre-
clinical settings and clinical trials demonstrate their safety and efficacy. The clinical ben-
efit and safety of CoQ10 supplementation has been reported in several phase 2 clinical
trials [38,39], while some clinical trials exhibited no significant benefit [95]. Mitochondria-
targeting CoQ10 (MitoQ) presented no clinical benefit in slowing PD progression in a
phase 2 clinical trial [96]. Ellwanger et al. reported that paraquat-caused locomotor impair-
ment in rats can be restored by selenium feeding [40]. Additionally, Sepidarkish et al. re-
ported in a systemic review [97] that omega-3 fatty acid with vitamin E co-supplementation
enhances total antioxidant capacity and decreases oxidative damage. In a randomized,
double-blind placebo-controlled clinical trial, the oral adjunction of omega-3 fatty acids and
vitamin E for three months improved GSH level and motor scale UPDRS [41]. Furthermore,
a phase 1/2a clinical study conducted by Mischley et al. demonstrated that intranasal GSH
supplement was safe and well-tolerated over a three-month intervention period [42]. How-
ever, phase 2b of the study showed no significant difference from the placebo group [43].
The fact that one participant developed cardiomyopathy [43] may delay future studies. In
addition, NAC (N-acetylcysteine) is a synthetic derivative of the endogenous amino acid
L-cysteine, a GSH precursor. NAC has been prescribed for replenishment of hepatic GSH
after acetaminophen overdose [98]. The mechanisms accounting for NAC’s antioxidant
activity may lie in supplementing GSH synthesis, scavenging ROS, and detoxification of
semiquinones, hypochlorous acid (HOCl), nitroxyl (HNO), and heavy metals [99]. Two
phase 1 trials reported that NAC administration boosted GSH redox ratios, brain GSH,
and cerebrospinal fluid (CSF) NAC concentrations [44,45]. Meanwhile, Sulforaphane (SFN)
is an isothiocyanate found in cruciferous vegetables, identified as an NFE2L2 inducer.
SFN has been successfully used in clinical trials for the treatment of patients with type II
diabetes mellitus [100,101]. In in vivo PD mouse models, SFN acted toward preventing
neurotoxin-induced dopaminergic neuron loss [46–48].
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5. Role of Ferroptosis in Microglia/Macrophage M1/M2 Polarization

Neuroinflammation mediated primarily by resident brain microglia has gained atten-
tion from researchers as both an important mediator of the dopaminergic neuron loss in PD
and an attractive drug target for neurodegenerative disease therapy [102–105]. Microglia
are the cells responsible for mediating the innate immune response in the brain through
antigen-presenting and effector functions such as phagocytosis [106]. When microglia are
activated, transformation and proliferative events occur to form reactive microglia [107],
which are distinguished by two distinct phenotypes: the M1 phenotype (pro-inflammatory),
and the M2 phenotype (anti-inflammatory). Rodriguez-Perez et al. showed that overex-
pression of α-syn induces a significant increase in M1 marker expression and decreased
M2, as well as a marked dopaminergic neuron loss and impaired motor function in mice.
They also demonstrated that deactivated microglia through inhibition of angiotensin type 1
receptors leads to decreased M1 and increased M2 marker expressions, as well as restored
dopaminergic neurons and ameliorated motor function [108]. Interestingly, microglial acti-
vation can affect intercellular transfer of α-Syn. George et al. demonstrated that microglia
play a role in α-syn cell-to-cell transfer, and that anti-inflammatory microglia may enhance
clearance of α-syn from extracellular space [109]. The M1 phenotype can be induced by
LPS, IFNγ, iron and ROS exposure, and is characterized by increased iNOS expression and
the secretion of inflammatory cytokines such as IL6, IL1β, and TNF, leading to neurode-
generation (Figure 4). On the other hand, M2 phenotype differentiation can be achieved
by IL4 treatment, and is characterized by increased arginase-1 levels and secretion of the
brain-derived neurotrophic factor (BDNF), and anti-inflammatory cytokines such as IL10
and TGFB, leading to neuroprotection.

Intracellular iron levels modulate differentiation towards one or the other pheno-
type [110]. An iron overload triggers M1 polarization via an ROS-mediated mecha-
nism [111], increasing TNF and IL1B secretion [112], and causes M2 macrophages to
switch their phenotype to M1 [113]. Iron chelator deferoxamine reduces ROS levels and
TNF and IL1B secretion by microglia [114] and also promotes microglial M2 polarization
neurodegeneration in animals [115]. Kapralov et al. revealed that M1 microglia are resistant
to ferroptotic stress, while M2 are more sensitive [116]. M2 microglia express remarkably
lower levels of inducible nitric oxide synthase (iNOS) than M1 microglia. Specifically,
the ferroptotic resistance of M1 microglia requires iNOS/NO•, while NO• empowers the
resistance of M2 microglia to ferroptosis. The activation of nuclear factor kappa B (NFκB),
a master transcription factor of neuroinflammation, serves to enhance the expression of
SLC11A2, contributing to iron accumulation in dopaminergic neurons [117]. Of note, ebse-
len, a SLC11A2 inhibitor was noted to reduce iron accumulation in the substantia nigra of
a neuroinflammation mouse model and improve motor performance [118]. Iron overload
can elicit microglial activation and promote NADPH oxidase 2 (NOX2)-dependent ROS
generation, further contributing to iron-mediated ferroptosis in midbrain-derived primary
cultures [119]. NOX2 activation is implicated in paraquat-mediated microglial activation
by iron [120]. The NOX inhibitor apocynin acts to increase the expression of SLC40A1,
inhibit iron accumulation and lipid peroxidation, alleviate neuroinflammation, and recue
dopaminergic neuron loss [121]. In an LPS/iron-induced neuroinflammation cell model,
NAC as an ROS scavenger effectively suppressed the expression of proinflammatory cy-
tokine [110], indicating NAC’s role in modulating iron-mediated neuroinflammation. In
addition, inhibition of HO-1 activity by ZnPP can abolish neuroinflammation in the mouse
brain [33]. Yan et al. reported that a CoQ10 analog, idebenone, exhibits a suppressive
effect on neuroinflammation microglial phenotype in an MPTP-stressed PD mouse model
by inhibiting Mitogen-Activated Protein Kinase 1/3 (MAPK1/3) and the NFκB signaling
pathway [122]. Figure 4 illustrates a summary diagram of ferroptosis pathways and corre-
sponding therapeutic targeting in M1/M2 microglia polarization and neuroinflammation.



Biomedicines 2021, 9, 1679 11 of 20

Biomedicines 2021, 9, x FOR PEER REVIEW 11 of 20 
 

in the mouse brain [33]. Yan et al. reported that a CoQ10 analog, idebenone, exhibits a 
suppressive effect on neuroinflammation microglial phenotype in an MPTP-stressed PD 
mouse model by inhibiting Mitogen-Activated Protein Kinase 1/3 (MAPK1/3) and the 
NFκB signaling pathway [122]. Figure 4 illustrates a summary diagram of ferroptosis 
pathways and corresponding therapeutic targeting in M1/M2 microglia polarization and 
neuroinflammation. 

 
Figure 4. Ferroptosis-associated molecules at the crossroad of microglia/macrophage M1/M2 polarization and neuroin-
flammation. While M1 microglia feature ferroptotic resistance, M2 microglia are vulnerable to ferroptosis. Therapeutic 
targets to reduce iron accumulation, scavenge ROS, and impede the formation of lipid peroxides could provide new hope 
in the treatment of PD and neurodegenerative disorders. ACSL4, acyl-CoA synthetase long chain family member 4; 
ALOX15, arachidonate 15-lipoxygenases; BDNF, brain derived neurotrophic factor; CoQ10, coenzyme Q10; Cys, cysteine; 
Cys2, cystine; DFO, desferoxamine; DHO, dihydroorotate; DHODH, dihydroorotate dehydrogenase; Gln, glutamine; Glu, 
glutamate; GPX4, glutathione peroxidase 4; GSH, glutathione; HO-1, heme oxygenase-1; IFNG, interferon gamma; IL1B, 
interleukin-1 beta; IL4, interleukin-4; IL10, interleukin-10; LPS, lipopolysaccharide; Mφ, macrophage; NAC, N-acetylcys-
teine; NFκB, nuclear factor kappa B; NOX2, NADPH oxidase 2; PUFA-PL-OOH, lipid peroxides generated from polyun-
saturated fatty acid-containing phospholipids; ROS, reactive oxygen species; SLC1A5, solute carrier family 1 member 5; 
SLC3A2, solute carrier family 3 member 2; SLC11A2, solute carrier family 11 member 2; SLC40A1, solute carrier family 40 
member 1; SLC7A11, solute carrier family 7 member 11; TFRC, transferrin receptor; TGFB1, transforming growth factor 
beta 1. 

6. Cerebrospinal Fluid (CSF) and Blood Biomarkers 
Given the importance of ferroptosis as an emerging pathway in the pathogenesis of 

PD, and in light of new therapies, the understanding of ferroptosis-related biomarkers can 
be of translational value. Table 3 shows a nonexhaustive list of ferroptosis-related bi-
omarkers of important in the context of PD. Isobe et al. reported that the percentage of 
oxidized/total CoQ10 in the CSF was significantly higher in the PD group compared to 

Figure 4. Ferroptosis-associated molecules at the crossroad of microglia/macrophage M1/M2 polarization and neuroin-
flammation. While M1 microglia feature ferroptotic resistance, M2 microglia are vulnerable to ferroptosis. Therapeutic
targets to reduce iron accumulation, scavenge ROS, and impede the formation of lipid peroxides could provide new hope in
the treatment of PD and neurodegenerative disorders. ACSL4, acyl-CoA synthetase long chain family member 4; ALOX15,
arachidonate 15-lipoxygenases; BDNF, brain derived neurotrophic factor; CoQ10, coenzyme Q10; Cys, cysteine; Cys2, cys-
tine; DFO, desferoxamine; DHO, dihydroorotate; DHODH, dihydroorotate dehydrogenase; Gln, glutamine; Glu, glutamate;
GPX4, glutathione peroxidase 4; GSH, glutathione; HO-1, heme oxygenase-1; IFNG, interferon gamma; IL1B, interleukin-1
beta; IL4, interleukin-4; IL10, interleukin-10; LPS, lipopolysaccharide; Mϕ, macrophage; NAC, N-acetylcysteine; NFκB,
nuclear factor kappa B; NOX2, NADPH oxidase 2; PUFA-PL-OOH, lipid peroxides generated from polyunsaturated fatty
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carrier family 3 member 2; SLC11A2, solute carrier family 11 member 2; SLC40A1, solute carrier family 40 member 1;
SLC7A11, solute carrier family 7 member 11; TFRC, transferrin receptor; TGFB1, transforming growth factor beta 1.

6. Cerebrospinal Fluid (CSF) and Blood Biomarkers

Given the importance of ferroptosis as an emerging pathway in the pathogenesis of
PD, and in light of new therapies, the understanding of ferroptosis-related biomarkers
can be of translational value. Table 3 shows a nonexhaustive list of ferroptosis-related
biomarkers of important in the context of PD. Isobe et al. reported that the percentage
of oxidized/total CoQ10 in the CSF was significantly higher in the PD group compared
to the normal control group [123]. Maarouf et al. found the postpartum CSF of PD
had lower levels of glutathione S-transferase pi 1 (GSTP1) compared to normal control
subjects [124]. Lewitt et al. demonstrated a decrease in CSF concentrations of GSH
compared to normal control [125]. Yu et al. reported that higher ·OH levels of CSF in
PD patients than controls [126]. Boll et al. found the higher levels of lipid peroxidation
products in the CSF PD patients than normal controls [127]. A systemic review conducted
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by Wei et al. revealed higher blood concentrations of malondialdehyde (MDA, a final
product of lipid peroxidation) and ferritin, and lower blood concentrations of GSH in PD
than in healthy control subjects [128]. Charisis et al. showed that a 1 µmol/L increase in
plasma GSH was associated with 0.4% less increase in prodromal PD probability for 1 year
of follow-up [129].

Table 3. Ferroptosis-related biomarkers of PD.

Source Biomarker Expression in PD References

CSF Oxidized Q10 ↑ [123]
CSF GSTP1 ↓ [124]
CSF GSH ↓ [125]
CSF ·OH ↑ [126]
CSF lipid peroxidation ↑ [127]

Blood lipid peroxidation (MDA) ↑ [128]
Blood ferritin ↑ [128]
Blood GSH ↓ [128]
Blood GSH ↓ [129]

CSF, cerebrospinal fluid; GSH, glutathione; GSTP1, glutathione S-transferase pi 1; MDA, malondialdehyde;
·OH, hydroxyl radical.

7. Conclusions

Advanced investigations have provided further insight into our understanding of
ferroptosis, which involves the integration of highly organized systems that regulate iron
metabolism, lipid peroxidation, and antioxidant defense. More importantly, clinical trials
that apply ferroptosis-counteracting agents to patients with PD are ongoing. As such, it
is inevitable that continued research in this field will further elucidate the physiological
and pathological roles of ferroptosis, leading to the development of translational strategies
for the treatment of neurodegenerative diseases, including PD. However, to unequiv-
ocally monitor the therapeutic efficacy of future ferroptosis-targeting drug candidates,
new ferroptosis-specific pharmacodynamic biomarkers are urgently required and await
discovery.
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Abbreviations

6-OHDA 6-hydroxydopamine
α-syn α-synuclein
ACO1 aconitase 1
ACSL4 acyl-CoA synthetase long chain family member 4
AIF-M2 apoptosis-inducing factor mitochondrial 2
AIM2 absent in melanoma like receptor 2
ALOXs arachidonate lipoxygenases
APAF1 apoptotic peptidase activating factor 1
ASC apoptosis-associated speck-like protein containing a CARD
BAD BCL2 associated agonist of cell death
BAK Bcl-2 homologous antagonist/killer
BAX Bcl-2-associated X
BBC3 BCL2 binding component 3
BCL2 B-cell lymphoma 2
BCL2L11 BCL2 Like 11
BID BH3 interacting domain death agonist
BDNF brain-derived neurotrophic factor
CISD1 CDGSH iron sulfur domain 1
CISD2 CDGSH iron sulfur domain 2
Cys cysteine
Cys2 cystine
DFP deferiprone
DFX deferoxamine
DHO dihydroorotate
DHODH dihydroorotate dehydrogenase
FADD Fas-associated protein with death domain
FBXL5 F-box and leucine-rich repeat protein 5
FDA Food and Drug Administration
Fer-1 Ferrostatin-1
FSP-1 ferroptosis suppressor protein 1
FTH1 ferritin heavy chain 1
FTL ferritin light chain
GCL glutamate-cysteine ligase
GPX4 glutathione peroxidase 4
GSDMD gasdemin D
CSF cerebrospinal fluid
GSH glutathione
GSS glutathione synthetase
HMGCR HMG-CoA reductase
HNO nitroxyl
HO-1 heme oxygenase-1
HOCl hypochlorous acid
ICD immunogenic cell death
IFNG interferon gamma
iNOS inducible nitric oxide synthase
IL1B interleukin-1 beta
IL4 interleukin-4
IL10 interleukin-10
IL18 interleukin-18
IMM inner membrane of mitochondria
IMS intermembrane space
IPP isopentenyl-pyrophosphate
IREB2 iron-responsive element binding protein 2
IREs iron-responsive elements
ISCU iron-sulfur cluster assembly enzyme
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Lip-1 Liproxstatin-1
LPCAT3 lysophosphatidylcholine acyltransferase 3
LPS lipopolysaccharide
LTF lactotransferrin
Mf macrophage
MAPK1 mitogen-activated protein kinase 1
MAPK3 mitogen-activated protein kinase 3
MLKL mixed lineage kinase domain-like pseudokinase
MOMP mitochondrial outer membrane permeabilization
MVA mevalonate
NAC N-acetylcysteine
NCOA4 nuclear receptor co-activator 4
Nec-1 necrostatin-1
NFE2L2 nuclear factor erythroid 2 like 2
NFS1 cysteine desulfurase
NLRP3 nod-like receptor 3
NOX2 NADPH oxidase 2
NQO1 NAD(P)H quinone dehydrogenase 1
OA orotate
OMM outer membrane of mitochondria
PD Parkinson’s disease
PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1
PROM2 prominin2
PUFAs polyunsaturated fatty acids

PUFA-PL-OOH
lipid peroxides generated from polyunsaturated fatty
acid-containing phospholipids

RCD regulated cell death
RCT randomized clinical trial
RIP1 receptor-interacting protein kinase 1
RIP3 receptor-interacting protein kinase 3
ROS reactive oxygen species
SFN sulforaphane
SLC1A5 solute carrier family 1 member 5
SLC3A2 solute carrier family 3 member 2
SLC38A1 solute carrier family 38 member 1
SLC7A11 solute carrier family 7 member 11
SLC11A2 solute carrier family 11 member 2
SLC40A1 solute carrier family 40 member 1
SCL46A1 solute carrier family 46 member 1
SCL48A1 solute carrier family 48 member 1
SOD superoxide dismutase
TF transferrin; TFRC, transferrin receptor
tBID truncated BH3 interacting domain death agonist
TCD tolerogenic cell death
TF transferrin
TFRC transferrin receptor
TGFB1 transforming growth factor beta 1
TNF tumor necrosis factor
TNFR tumor necrosis factor receptor
TRAIL tumor necrosis factor-related apoptosis-inducing ligand
TRAILR1 tumor necrosis factor-related apoptosis-inducing ligand receptor 1
ZnPP zinc protoporphyrin
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